

Results of the "Bicyclists' Injuries and the Cycling Environment" Study

differences in cycling injury rates - Europe & NA

[data sources: International - Pucher & Buehler *Transport Reviews* 2008;28:495-528 BC - Motor Vehicle Branch, 2005 to 2007, TransLink's 2008 Trip Diary Survey, Census 2006]

why the differences?

It's not the Europeans who wear **helmets**

- helmets do reduce post-crash severity of head and face injuries
- but they don't prevent crashes

why the differences?

Best evidence: safety in numbers

[source: Jacobsen. Injury Prevention 2003;9:205-9]

why the differences?

What about route infrastructure?

- typical in North America to provide little or no bike infrastructure
- in high cycling European countries, usually provide separated facilities where motor vehicle traffic volumes and speeds are high
- little research, results difficult to interpret

North America:
John Forester

'vehicular cycling'

Bicyclists' Injuries & the Cycling Environment

participating cities

Vancouver

- 2 participating hospitals
- 0.6 million people
- rain in winter, temperate summer
- lots of hills
- 26 km of bike lanes & paths per 100,000 population
- 4% of trips by bike

Toronto

- 3 participating hospitals
- 2.5 million people
- snow in winter, heat in summer
- mostly flat
- 11 km of bike lanes & paths per 100,000 population
- 1% of trips by bike

study overview

interview to map route & choose control sites

observations of injury & control sites

"case-crossover" design features

two separate analyses

1. Non-Intersections

2. Intersections

Study results

participants & trips

TorontoVancouver	²⁷³ } 690
 male 19 to 39 years old income > \$50,000 cycle > 52 times/year 	59% 62% 56% 88%
wore helmetwore high viz clothes	69% 33%
trip < 5 kmweekday, daylight	68% 77%
commuteother transport	42% 32%

injury circumstances

1. Non-intersections

non-intersection injury sites compared to non-intersection control sites

Cycle tracks

Bike lanes

Sharrows

Lowest risk: 1/20 risk

Higher risk than no infrastructure

Traffic Diversion

Traffic Slowing

1/20 risk of no infrastructure

slightly higher risk than no infrastructure

Bike paths

Multiuse paths

Sidewalks

lower risk than no infrastructure

higher risk than no infrastructure

Grade, Tracks, Construction

Route Grade

Streetcar or Train Tracks

Construction

Safer: Cycle tracks alongside major streets Traffic diversion from residential streets Residential streets with bike signage Bike lanes Bike paths More dangerous: • Sharrows Sidewalks Traffic slowing devices on local streets Major streets with no bike infrastructure Streetcar and train tracks

1. Non-intersections

Construction

Downhill grades

non-intersection injury sites compared to non-intersection control sites

Comments or questions on non-intersection results?

2. Intersections

intersection injury sites compared to intersection control sites

Types of Roads Meeting

Types of Roads Meeting

Types of Roads Meeting

Vehicle Speed, Grade, Direction

Motor Vehicle Speed

Route Grade

Cyclist Direction

2. Intersections

intersection injury sites compared to intersection control sites

Concluding thoughts . . .

Why the differences? Route infrastructure is a strong determinant of injury risk

[data sources: International - Pucher & Buehler *Transport Reviews* 2008;28:495-528 BC - Motor Vehicle Branch, 2005 to 2007, TransLink's 2008 Trip Diary Survey, Census 2006]

Bike-specific infrastructure is key

Previous research grouped

- routes on or alongside streets:
 cycle tracks, bike lanes,
 sharrows, no infrastructure
- off-street routes:
 bike paths, multiuse paths, trails, sidewalks

Not possible to observe the large differences in risk between them

... so why did Forester think bike lanes & paths were unsafe?

Separation from traffic is key

Busy streets: physical barrier between cyclists and traffic

Residential streets: traffic diversion for "quiet" streets

Reducing speeds is key

Motor vehicle speeds

Cyclist speeds down hills

Removing obstacles is key

Streetcar or train tracks

Traffic circles

Construction

Bollards

Sharp or blind curves

limitations

Mildest and most severe injuries not included:

- all injury studies focus on defined categories of injuries
- here, those who attended emergency department within 24 hours and able to recall route

Not possible to test many route designs available in Europe:

- multiple types of cycle tracks
- innovative intersection designs

But more route designs tested than in other studies to date, all objectively measured.

- Melody Monro
- Evan Beaupre
- Niki Blakely
- Jill Dalton
- Martin Kang
- Theresa Frendo
- David Hay
- Kishore Mulpuri
- Peter Stary

- Lee Vernich
- Vartouji Jazmaji
- Kevin McCurley
- Andrew Thomas
- Doug Chisholm
- Fred Sztabinski
- David Tomlinson
- Barbara Wentworth

cyclingincities.spph.ubc.ca