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Abstract

Background: There is growing interest in designing cities that support not only walking, but also cycling. Bike Score®
is a metric capturing environmental characteristics associated with cycling that is now available for over 160 US and
Canadian cities. Our aim was to determine if Bike Score was associated with between and within-city variability in
cycling behavior.

Methods: We used linear regression to model associations between Bike Score and journey to work cycling mode share
(US: American Community Survey, 2013 or 2012 5-year estimates; Canada: 2011 National Household Survey) for 5664
census tracts in 24 US and Canadian cities.

Results: At the city level, the correlation between mean Bike Score and mean journey to work cycling mode share was
moderate (r = 0.52). At the census tract level, the correlation was 0.35; a ten-unit increase in Bike Score was associated
with a 0.5 % (95 % CI: 0.5 to 0.6) increase in the proportion of population cycling to work, a meaningful difference
given the low modal shares (mean = 1.9 %) in many North American cities. Census tracts with the highest Bike Scores
(>90 to 100) had mode shares 4.0 % higher (β = 4.0, 95 % CI: 2.9 to 5.0) than the lowest Bike Score areas (0–25). City
specific analyses indicated between-city variability in associations, with regression estimates between Bike Score and
mode share ranging from 0.2 to 3.5 %.

Conclusions: The Bike Score metric was associated bicycle mode share between and within cities, suggesting its utility
for planning bicycle infrastructure.
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Background
Considering both risks and benefits, active travel carries
a net benefit on all-cause mortality [1–3]. In ecological
studies, areas with higher levels of active travel are asso-
ciated with lower traffic fatality risk, [4] higher levels of
physical activity, [5] and lower rates of obesity and dia-
betes [5]. Many studies have documented links between
neighborhood design and active transportation [6, 7]. In
early research project-specific measures of walkability
were developed, limiting comparability between studies
[8, 9]. More recently, researchers have used Walk Score®
(www.walkscore.com), [10–13] a web-based tool that
scores neighborhood walkability based on proximity to
various destinations. The popularity of the Walk Score
metric is likely due in part to its extensive coverage of

North America, providing consistent methodology across
settings at relatively low cost. Walk Score is correlated with
other measures of access to destinations and walkability
[14], and with walking for transportation [11, 15, 16] at a
level comparable with other walkability measures [15].
In contrast with walking, cycling has received less

attention in the neighborhood design literature. Cycling
is currently underused as a transportation mode in
North America, although there may be increased uptake
with improvements in infrastructure amid health, environ-
mental, and mobility considerations [17, 18]. There are
similarities in features that constitute a walkable or a
bikeable neighborhood, however, certain environmental
characteristics such as cycling-specific infrastructure and
topography are additional factors relevant for cycling
[19–22]. In order to promote a shift to active transpor-
tation for trips of moderate distance, beyond distances* Correspondence: mwinters@sfu.ca
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suitable to walking, metrics specific to cycling are use-
ful for guiding neighborhood design.
In 2012 we partnered with Walk Score to incorporate

findings from our empirical research on cycling and urban
form, [19] which led to their development of “Bike Score”
in North American cities. Bike Score is based on environ-
mental characteristics consistently associated with cycling:
density and quality of cycling infrastructure, topography,
desirable amenities and road connectivity. As of 2015 Bike
Score was available for over 160 US and Canadian cities.
City- and neighborhood- rankings have been publicized
by Walk Score, [23] but its correlation with cycling be-
havior has not been explored. We assess the extent
which Bike Score predicts cycling behavior, both between
and within cities, through an analysis of 5664 census tracts
across 24 Canadian and US cities.

Methods
In this ecological analysis, cities and census tracts are
the units of analysis. Census tracts in both the US and
Canada represent populations of 2000–8000 and approxi-
mate neighborhoods.

Bike Score data
We obtained Bike Score data shapefiles (2012) for nine
Canadian cities and 15 US cities directly from Walk
Score (now RedFin Real Estate). We were provided with
point files (100 m grid) with attributes for Bike Score and
each of its components for each city that was included in
the original Bike Score launch. The methodology is here:
https://www.walkscore.com/bike-score-methodology.shtml.
In brief, Bike Score ranges from 0 to 100, and is comprised
of 3 environmental components: a Bike Lane Score, a Hill
Score, and a Destinations and Connectivity Score, each
ranging from 0 to 100 where 100 describes the most bike-
able (more bicycle facilities, flat topography, and more des-
tinations and connectivity, respectively). The Bike Lane
Score is derived from cycling infrastructure data provided
by municipal governments. It captures painted bicycle
lanes, off-street trails, cycle tracks, and residential bike-
ways; it does not include sharrows (shared-lane markings),
or other cycling initiatives such as bicycle parking or bike
share programs. The score weights separated facilities
twice as much as on-street facilities, and uses a distance
decay function to favour proximity. The Hill Score is
based on the steepest grade in a 200 m radius area. The
Connectivity Score is equivalent to Street Smart Walk
Score®. For US cities, the public version of Bike Score also
includes a fourth “social” component: the proportion of
the population that cycles to work. Given that our aim
was to assess how Bike Score predicts cycling behavior, we
used the 3 component version of Bike Score for both
Canadian and US cities. The summary metric, Bike Score,
is a weighted sum of the Bike Lane Score (50 %), Hill

Score (25 %), and Destinations and Connectivity Score
(25 %). As indicated above, the authors (MW, KT, MB)
contributed to the development of Bike Score.

Spatial summary of Bike Score data
For city level analyses, we used the mean city-wide Bike
Score as provided by Walk Score. For within-city ana-
lyses, we used ArcGIS 10.2 to calculate a mean Bike
Score for each census tract from Bike Score shapefiles.
In brief, we imported the Bike Score point data for each
city into ArcGIS and merged it into one file per country.
We obtained census geography files for Canadian (2011)
and US (2010) census tracts, and developed a Model-
Builder toolbox to summarize Bike Score and compo-
nent score values for each census tract. This process
involved (1) attributing each Bike Score point to the
appropriate census tract and calculating the average Bike
Score for each census tract and (2) calculating the cover-
age of Bike Score data for each census tract (area with
Bike Score data/total area of census tract; using Mollweide
projection). We excluded census tracts where Bike Score
data coverage was less than 80 % by area.

Cycling mode share data
We sought to use the most accurate, comparable and
up-to-date sources of cycling data. For Canada, we ex-
tracted journey to work mode share data from the 2011
National Household Survey, [24] available at both city
level and census tract level. For the US, we drew data
from American Community Survey, [25] using the 2013
1-year estimates for city level analyses, and 5-year esti-
mates (2012) for census tract analyses. While census
journey to work data is the best available, it must be
noted that it represents only cycling trips for work pur-
poses, it does not capture multi-modal trips, and the
spatial information is linked to the residential location
(not route or destination).

Statistical analysis
All statistical analyses were conducted in R (Additional
file 1 includes R code and output) [26]. In the city level
analysis we report correlations using both Pearson r and
and Spearman ρ, and use linear regression to examine
the relationship between Bike Score and cycling mode
share. Within each city there was substantial variability
in both Bike Score and cycling mode share, and thus we
conducted census tract level analyses to understand the
relationship at the neighborhood-level. We calculated
descriptive statistics across all census tracts and stratified
by city.
We used linear regression to analyse the association

between Bike Score and cycling mode share, with census
tract as the unit of analysis. We calculated unadjusted
associations between Bike Score, or its components, and
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cycling mode share. Given the wide range of Bike Score
and its components (0–100), we present coefficients for
the effect of a 10-unit change on cycling mode share,
and also for Bike Score in five categories (0 to 25, >25 to
50, >50 to 75, >75 to 90, and >90 to 100), as has been
used in previous work [11, 13]. We report adjusted asso-
ciations from fixed effect regression models, with a
dummy variable for city. The fixed effect approach ac-
counts for the clustered nature of census tracts within
cities, and provides an average estimate of the associ-
ation across all census tracts in all cities. We also ran
city-specific models to provide city-specific estimates of
the association, which may be of value to future studies
focused on a particular location. We first modeled the
outcome of cycling mode share with Bike Score and city
as independent variables (model 1). In model 2, the Bike
Score components (Bike Lane Score, Hill Score, Destina-
tions and Connectivity Score) and city were independent
variables. In model 3, we included the categorized Bike
Score variable and city as independent variables. We
used New York City as the reference city for all models,
given that it has the largest number of census tracts and

the lowest mean cycling mode share across census tracts.
Finally, we also performed a multilevel model of the associ-
ation between Bike Score and cycling modes share, using
random slope models which allow for different magnitudes
in the association across cities. We ran null models, con-
sidering city, or city and country, as random effects, and
related models with Bike Score as a fixed effect.

Results
City level analysis
Across the 24 cities, the city-wide mean Bike Scores and
mode shares ranged from 20 to 73 and 0.3 to 12.3 %, re-
spectively (Additional file 2: Table S1). In cities with
higher mean Bike Score, more people cycled to work
(Fig. 1). At the city level, the correlation between mean
Bike Score and mean journey to work cycling mode
share was moderate (Pearson’s r = 0.52 and Spearman’s
ρ = 0.56). The association between Bike Score and cyc-
ling mode share was positive and significant (β = 1.5 %
for a 10-unit change in Bike Score, 95 % CI 0.4 to 2.6 %)
with Bike Score explaining 27 % of the variation in
cycling mode share between cities.

Fig. 1 Scatter plot and estimated regression line for City-wide cycling mode sharea and City-wide Average Bike Score®a.b Linear regression
estimated association between Bike Score and cycling mode share. We show the full possible range of Bike Score, however, city-wide averages
for the study cities do not cover this full range. aCity-wide journey to work cycling mode share (% commutes by bike for workers aged 16 years
and older) -American Community Survey, 2013 1-year estimates, U.S. Census Bureau; CA data is 2011 National Household Survey, Journey to work
Bicycle Mode Share for population aged 15 years and older with a usual place of work. bCity-wide Bike Score and components provided directly
from the company (now Redfin Real Estate), using 3 components (Bike Lane Score, Hill Score, Destinations and Connectivity Score), May 2012 release
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Census tract level analyses
The analysis dataset included 5664 census tracts nested
in 24 cities, with a range of 15 (Moncton, New Brunswick)
to 2164 (New York City) tracts per city. Across all census
tracts, the mean Bike Score was 67.0, with a range from
5.9 to 100. Cycling mode share had a mean of 1.9 % and
range of 0.0 to 34.0 %. Table 1 provides the descriptive sta-
tistics for cycling mode share and Bike Score (overall and
components) stratified by city. Across all census tracts, the
correlation between Bike Score and cycling mode share was
moderate (Pearson’s r = 0.35 and Spearman’s ρ = 0.40).
In unadjusted analyses, Bike Score and each of the Bike

Score components - Bike Lane Score, Hill Score, Destina-
tions and Connectivity Score - were significantly associ-
ated with cycling mode share (Table 2). The unadjusted

association for Hill Score (higher scores mean flatter top-
ography, which would be hypothesized to promote cyc-
ling) was negative - opposite to expectation.
In multiple linear regression adjusting for city (Table 2,

Model 1), a ten-unit increase in the Bike Score of a cen-
sus tract was associated with a 0.5 % increase in the
proportion of population cycling to work (β = 0.5, 95 %
CI: 0.5 to 0.6). Adjusting for city improved the model
fit (Model 1 AIC = 11035, versus unadjusted model
AIC = 12627; R2 = 0.35 versus R2 = 0.12). In the model
including all Bike Score components (Table 2, Model 2)
each of the components had significant associations
and the Hill Score was positively associated with cyc-
ling mode share, as expected. The change in the direc-
tion between unadjusted and adjusted models suggests

Table 1 Descriptive characteristics for 5664 census tracts in 24 study cities
City, State/Province Number of

Census Tracts
Cycling Mode Sharea (%)
(mean, (SD))

Bike Score®b

(mean, (SD))
Bike Lane Score
(mean, (SD))

Hill Score
(mean, (SD))

Destinations and
Connectivity Score
(mean, (SD))

Ann Arbor, Michigan 33 3.6 (2.7) 76.4 (13.9) 79.9 (18.2) 91.2 (9.0) 55.6 (26.9)

Austin, Texas 164 1.8 (2.8) 48.3 (17.4) 26.3 (24.5) 85.8 (17.5) 55.3 (27.2)

Boston, Massachusetts 179 1.6 (2.4) 73.4 (19.1) 57.7 (32.0) 88.6 (14.5) 90.4 (17.2)

Calgary, Alberta 221 1.2 (1.8) 74.4 (13.0) 84.0 (19.7) 88.3 (13.3) 42.0 (26.0)

Chicago, Illinois 768 1.2 (2.0) 60.5 (13.6) 25.9 (24.6) 100.0 (0.4) 90.9 (15.0)

Eugene, Oregon 31 10.6 (7.2) 77.9 (18.4) 83.4 (18.4) 82.2 (29.5) 63.6 (24.6)

Fort Collins, Colorado 33 7.8 (6.0) 83.6 (10.7) 93.4 (10.5) 97.8 (5.9) 50.7 (23.8)

Halifax, Nova Scotia 25 3.9 (3.9) 67.4 (14.6) 60.9 (22.2) 71.5 (14.4) 76.9 (22.0)

Madison, Wisconsin 53 5.9 (5.0) 67.4 (19.8) 58.5 (27.5) 91.2 (8.3) 62.0 (26.6)

Minneapolis, Minnesota 115 3.9 (3.3) 77.6 (15.2) 65.8 (27.0) 96.4 (6.3) 82.8 (18.4)

Moncton, New Brunswick 15 0.4 (0.8) 49.3 (15.3) 29.1 (25.6) 94.2 (3.8) 45.5 (30.9)

Montréal, Québec 320 4.8 (4.6) 78.8 (17.7) 64.4 (33.3) 97.8 (9.3) 89.2 (21.9)

New York, New York 2164 0.7 (1.4) 64.8 (18.3) 36.4 (35.7) 95.4 (11.4) 91.6 (19.2)

Portland, Oregon 137 6.3 (5.6) 69.5 (20.3) 58.7 (25.9) 80.5 (26.7) 80.8 (23.1)

San Francisco, California 196 3.1 (3.4) 77.8 (17.3) 84.3 (24.4) 53.8 (32.5) 89.8 (21.1)

Saskatoon, Saskatchewan 45 2.2 (2.4) 78.7 (13.1) 84.5 (20.0) 98.4 (3.3) 48.2 (27.9)

Seattle, Washington 132 3.3 (2.6) 60.9 (19.4) 51.2 (31.8) 65.0 (16.9) 77.1 (25.4)

St. John’s, Newfoundland
and Labrador

26 0.0 (0.0) 44.8 (16.7) 30.9 (24.9) 62.2 (23.0) 55.9 (33.3)

Tempe, Arizona 37 4.1 (4.4) 76.2 (12.4) 70.1 (22.8) 99.2 (3.4) 66.2 (15.3)

Toronto, Ontario 544 2.0 (3.8) 66.9 (16.4) 45.7 (30.9) 96.8 (6.4) 80.2 (19.9)

Tucson, Arizona 115 2.6 (3.8) 74.4 (19.2) 72.3 (26.6) 98.8 (5.5) 55.0 (26.7)

Vancouver, British
Columbia

115 4.1 (3.7) 78.0 (14.8) 71.2 (27.4) 79.3 (15.2) 91.1 (13.6)

Victoria, British Columbia 17 11.5 (4.3) 74.3 (17.1) 54.2 (32.4) 95.6 (6.2) 93.8 (5.7)

Washington, DC 179 2.5 (3.0) 66.5 (20.9) 52.2 (33.6) 79.5 (19.0) 82.8 (20.0)

Total 5664 1.9 (3.3) 67.0 (18.5) 46.5 (35.7) 91.9 (16.6) 83.6 (24.3)
aCensus tract level Journey to work Bicycle Mode Share (% commute by bike for workers aged 16 years and older) -American Community Survey, 5-year estimates
(2012 5-year estimates), U.S. Census Bureau, 2013 American Community Survey; CA data is 2011 National Household Survey, Census tract level Journey to work
Bicycle Mode Share for population aged 15 years and older with a usual place of work
bBike Score spatial data provided from Walk Score (May 2012 release); analysis here includes 3 components (Bike Lane Score, Hill Score, Destinations and Connectivity
Score); spatial data aggregated to the census tract in ArcGIS 10.2
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Table 2 Results of linear regression models estimating associations between Bike Score® and componentsa, and cycling mode shareb

Model 1 Model 2 Model 3

Unadjusted estimates Bike score + City Term Bike Score Components + Bike Score Categorical

City Term

β (95 % CI) β (95 % CI) β (95 % CI) β (95 % CI)

Intercept −2.6 (-2.9 to -2.3) −4.4 (−5.1 to −3.8) −1.4 (−2.4 to −0.3)

Bike Score (10-unit change) 0.6 (0.6 to 0.7) 0.5 (0.5 to 0.6)

Destinations/Connectivity Score
(10-unit change)

0.2 (0.1 to 0.2) 0.4 (0.3 to 0.4)

Bike Lane Score (10-unit change) 0.3 (0.3 to 0.3) 0.2 (0.2 to 0.2)

Hill Score (10-unit change) −0.1 (−0.2 to −0.1) 0.1 (0.1 to 0.2)

Bike Score (categorical)

0 to 25 0 (Reference) 0 (Reference)

>25 to 50 −0.2 (−1.3 to 1.0) 1.1 (0.1 to 2.2)

>50 to 75 0.8 (−0.3 to 2.0) 1.8 (0.8 to 2.9)

>75 to 90 2.0 (0.8 to 3.1) 2.6 (1.5 to 3.6)

>90 to 100 3.5 (2.3 to 4.7) 4.0 (2.9 to 5.0)

City

New York, New York Reference Reference Reference

Ann Arbor, Michigan 2.3 (1.3 to 3.2) 3.4 (2.5 to 4.4) 2.5 (1.5 to 3.4)

Austin, Texas 2.0 (1.5 to 2.4) 2.8 (2.3 to 3.2) 1.8 (1.3 to 2.2)

Boston, Massachusetts 0.5 (0.4 to 0.9) 0.6 (0.2 to 1.0) 0.5 (0.1 to 0.9)

Calgary, Alberta 0.0 (−0.4 to 0.4) 1.5 (1.0 to 1.9) 0.3 (−0.1 to 0.6)

Chicago, Illinois 0.7 (0.5 to 0.9) 0.7 (0.5 to 0.9) 0.7 (0.5 to 1.0)

Eugene, Oregon 9.3 (8.3 to 10.2) 10.3 (9.3 to 11.2) 9.4 (8.4 to 10.3)

Fort Collins, Colorado 6.2 (5.3 to 7.1) 7.5 (6.6 to 8.4) 6.3 (5.3 to 7.2)

Halifax, Nova Scotia 3.1 (2.0 to 4.2) 3.7 (2.6 to 4.8) 3.3 (2.2 to 4.4)

Madison, Wisconsin 5.0 (4.3 to 5.8) 5.9 (5.1 to 6.6) 5.1 (4.4 to 5.8)

Minneapolis, Minnesota 2.6 (2.0 to 3.1) 3.0 (2.5 to 3.5) 2.7 (2.2 to 3.2)

Moncton, New Brunswick 0.5 (−0.9 to 1.8) 1.5 (0.1 to 2.9) 0.3 (−1.1 to 1.6)

Montréal, Québec 3.4 (3.1 to 3.7) 3.7 (3.3 to 4.0) 3.4 (3.1 to 3.8)

Portland, Oregon 5.4 (4.9 to 5.9) 5.8 (5.4 to 6.3) 5.4 (5.0 to 5.9)

San Francisco, California 1.7 (1.3 to 2.1) 2.1 (1.6 to 2.5) 1.8 (1.4 to 2.2)

Saskatoon, Saskatchewan 0.8 (0.0 to 1.6) 2.1 (1.3 to 3.0) 1.0 (0.2 to 1.8)

Seattle, Washington 2.8 (2.4 to 3.3) 3.3 (2.8 to 3.8) 2.8 (2.3 to 3.3)

St. John’s, Newfoundland and Labrador 0.3 (−0.8 to 1.4) 1.1 (−0.2 to 2.1) 10.6 (−0.2 to 21.4)

Tempe, Arizona 2.8 (1.9 to 3.7) 3.6 (2.8 to 4.5) 3.1 (2.2 to 3.9)

Toronto, Ontario 1.2 (1.0 to 1.5) 1.5 (1.3 to 1.8) 1.3 (1.0 to 1.5)

Tucson, Arizona 1.4 (0.9 to 1.9) 2.4 (1.9 to 3.0) 1.4 (0.9 to 1.9)

Vancouver, British-Columbia 2.8 (2.3 to 3.3) 3.0 (2.5 to 3.6) 2.9 (2.4 to 3.4)

Victoria, British-Columbia 10.4 (9.1 to 11.6) 10.4 (9.2 to 11.7) 10.3 (9.0 to 11.6)

Washington, DC 1.7 (1.3 to 2.2) 2.1 (1.6 to 2.5) 1.7 (1.3 to 2.1)

Adj-R2 0.12 (Bike Score, unadjusted) 0.35 0.36 0.34

AIC 12627 11035 10870

Data for 5664 Census Tracts in 24 Cities. Coefficients represent % mode share. Boldface indicates statistical significance (p < 0.05)
aBike Score spatial data provided from Walk Score (May 2012 release); analysis here includes 3 components (Bike Lane Score, Hill Score, Destinations and
Connectivity Score); spatial data aggregated to the census tract in ArcGIS
bCensus tract level Journey to work Bicycle Mode Share (% commute by bike for workers aged 16 years and older) -American Community Survey, 5-year estimates
(2012 5-year estimates), U.S. Census Bureau, 2013 American Community Survey; CA data is 2011 National Household Survey, Census tract level Journey to work
Bicycle Mode Share for population aged 15 years and older with a usual place of work
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confounding of the association by one or more of the
other variables in the model (Destinations and Con-
nectivity Score, Bike Lane Score, city). Across the three

components, the Destination and Connectivity Score
had the largest adjusted estimate (β = 0.4, 95 % CI: 0.3
to 0.4), suggesting a slightly stronger relationship with

Fig. 2 Scatter plot and estimated regression line for cycling mode sharea and Bike Scoreb, for 5664 census tracts in 24 study cities (Panel a), and
stratified by city (Panel b) * City-specific regressions with significant slope estimates (see Table 3 for estimate values). a Census tract level Journey
to work Bicycle Mode Share (% commutes by bike for workers aged 16 years and older) -American Community Survey, 5-year estimates (2012 5-
year estimates), U.S. Census Bureau, 2013 American Community Survey; CA data is 2011 National Household Survey, Census tract level Journey to
work Bicycle Mode Share for population aged 15 years and older with a usual place of work. b Bike Score spatial data provided from Walk Score
(May 2012 release); analysis here includes 3 components (Bike Lane Score, Hill Score, Destinations and Connectivity Score); spatial data
aggregated to the census tract in ArcGIS 10.2
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journey to work mode share as compared with the Bike
Lane Score (β = 0.2, 95 % CI: 0.2 to 0.2) or Hill Score
(β = 0.1, 95 % CI: 0.1 to 0.2).
Across all census tracts there was substantial variability

in cycling mode share across Bike Score values (Fig. 2a):
there were census tracts with 0 % mode share across all
Bike Score values, and at the maximum Bike Score, there
were census tracts with mode shares ranging from 0 to
above 20 %. Moreover, the distribution of Bike Score was
not normal (median = 65, 10th percentile = 46; 90th per-
centile = 94), and the scatterplot indicated a ceiling
effect (140/5664 census tracts have a Bike Score of 100).
Given the potential for non-linear effects we also cate-

gorized the Bike Score into five categories, reflecting
visual breaks in the data. This model (Table 2, Model 3)
showed consistent increases in cycling mode share across
the increasing categories of Bike Score. Compared with
census tracts with Bike Scores of 0–25, those with Bike

Scores of >75 to 90 had mode shares 2.6 % higher (β = 2.6,
95 % CI: 1.5 to 3.6), and the highest Bike Score census
tracts (>90 to 100) had mode shares 4.0 % higher (β = 4.0,
95 % CI: 2.9 to 5.0).
Figure 2b shows city-specific scatterplots and regres-

sion lines, highlighting differences in the underlying data
and the nature of the association between Bike Score
and cycling mode share. Certain cities have no census
tracts with low Bike Scores (e.g., Tempe; Saskatoon,
Victoria), while others have none with high Bike Scores
(e.g., Moncton, St John’s). The strength of the association
varies between cities, with cities such as Madison and Fort
Collins showing steeper gradients. City-specific regression
coefficients (Table 3) were significant for 18 of 23 cities
(the model for St John’s had no fit), ranging from a high of
a 3.5 % change in mode share for 10 unit change in Bike
Score (Fort Collins), to a low of 0.2 % (Boston, Calgary,
and New York).

Table 3 City-specific linear regression results for cycling mode share and Bike Score (5664 census tracts in 24 study cities)
Intercept Bike score coefficient Adjusted R2

(10-unit change)

β (95 % CI)

Ann Arbor, Michigan −3.3 0.9 (0.3–1.5) 0.19

Austin, Texas −2.5 0.9 (0.7–1.1) 0.30

Boston, Massachusetts 0 0.2 (0.0–0.4) 0.02

Calgary, Alberta −0.5 0.2 (0.0–0.4) 0.02

Chicago, Illinois −1.6 0.4 (0.3–0.5) 0.09

Eugene, Oregon −0.5 1.4 (0.1–2.7) 0.10

Fort Collins, Colorado −21.8 3.5 (2.0–5.0) 0.38

Halifax, Nova Scotia −1 0.7 (−0.4−1.8) 0.04

Madison, Wisconsin −7.2 1.9 (1.4–2.4) 0.55

Minneapolis, Minnesota 0.9 0.4 (0.0–0.8) 0.02

Moncton, New Brunswick −0.8 0.2 (−0.1−0.5) 0.13

Montréal, Québec −7.7 1.6 (1.4–1.8) 0.36

New York, New York −0.6 0.2 (0.2–0.2) 0.07

Portland, Oregon −2.3 1.2 (0.8–1.6) 0.20

San Francisco, California −3.2 0.8 (0.5–1.1) 0.15

Saskatoon, Saskatchewan 0.5 0.2 (−0.5−0.9) −0.01

Seattle, Washington 1.4 0.3 (0.1–0.5) 0.05

St. John’s, Newfoundland and Labrador No fita - -

Tempe, Arizona −8.3 1.6 (0.6–2.6) 0.19

Toronto, Ontario −1.8 0.6 (0.4–0.8) 0.06

Tucson, Arizona −5 1.0 (0.7–1.3) 0.24

Vancouver, British-Columbia −2.1 0.8 (0.4–1.2) 0.09

Victoria, British-Columbia 19.9 −1.1 (−2.2−0.0) 0.15

Washington, DC −1.4 0.6 (0.4–0.8) 0.16

Bold indicates coefficient is statistically significant at p < 0.05
aCycling mode share was 0 % for all census tracts in St. John’s
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As we were primarily interested in interpretability and
the magnitude of the association (versus its variance) we
have focused on the fixed effect models. However, we
did also fit multilevel models. These showed similar
magnitude in the association between Bike Score and
cycling mode share (Additional file 3: Table S2). When
we compared the relative fit of multilevel models using
the likelihood ratio test between nested models, and
found that random slope models fit better than random
intercept models.

Discussion
The development of Bike Score created the first oppor-
tunity to conduct between and within city comparisons
between cycling mode share and a widely available metric
for measuring the cycling environment. Across 24 cities,
there was a moderate correlation between Bike Score and
journey to work mode share. Prior ecological studies have
looked at the environmental, climate, and social influences
associated with cycling mode share using cities or health
regions as the unit of analysis [27–29], but these may
mask important variability in cycling rates and conditions
within cities. Given the high resolution Bike Score data we
were able to do a census tract level analysis and found that
a 10 unit increase in Bike Score was associated with a
0.5 % increase in journey to work mode share, a meaning-
ful difference given the low cycling mode shares across
much of North America. This work confirms that Bike
Score is associated with cycling mode share, and suggests
this metric has utility for research and practice to aid with
planning bicycle infrastructure and increasing bicycle
mode share.
We found a significant association across all cities, how-

ever, our within-city analysis identified important nuances
on the association for specific cities. Eighteen cities had
significant associations between mode share and Bike
Score with estimates varying from modest (0.2 % per 10
unit change in Bike Score) to dramatic (3.5 %) in city-
specific models. We conclude that Bike Score shows utility
for national or multicity studies, but closer inspection may
be needed prior to its application for city-specific analysis
and planning in certain locations.
The development of Bike Score was based on environ-

mental factors consistently related to cycling in the
literature [19, 30]. We found that Bike Lane Score, Hill
Score, and the Destinations and Connectivity Score were
all independently associated with cycling mode share.
The Destination and Connectivity Score had a marginally
stronger association than the other components in the
adjusted model (Model 2). This score is equivalent to
the Walk Score’s ‘Street Smart Walk Score’, and thus
this finding highlights synergies between promoting
walking and cycling. Topography is arguably more of a
barrier for cycling than for walking. The study cities

included very hilly areas (San Francisco, Seattle) and
also very flat areas (Saskatoon), and the Hill Score
maintained an independent effect: areas with fewer hills
had higher cycling mode shares in the adjusted model.
Of the three components, the Bike Lane Score may be

the most actionable component for local and regional
governments in the short term. The importance of cycling-
specific facilities has been emphasized for promoting safe
and comfortable cycling [21] as well as attracting new
cyclists [31]. The data for the Bike Lane Score was pro-
vided directly from city governments, with only the follow-
ing cycling infrastructure included: bike lanes, residential
street bikeways (combined as on-street), and cycle tracks
and off-street paths (combined as off-street). The Bike
Lane Score could be considered an indicator of safety,
given that these infrastructure types are safer than major
streets [32, 33] and are preferred by cyclists, [34] especially
women and those new to bicycling [31, 35]. Subsequent
work may evaluate correlations between Bike Score and
cycling safety, although obtaining consistent and compar-
able safety data across countries, cities and census tracts
will be a challenge.
The metrics developed by Walk Score (Walk Score,

Bike Score, and Transit Score) are intuitive, easy to use,
and available online, fulfilling many of the recommenda-
tions for making built environment measures relevant to
practice [36]. The Bike Score methodology was informed
by empirical research, however, the specific algorithms
and decay functions are proprietary. We recommended
that users think critically about the quality of the under-
lying data sources. The Hill Score is based on the widely-
used National Elevation Data set from the US Geological
Survey [37]. The Bike Lane Score is based on data provided
by local governments in 2012 and again in 2015 according
to standardized criteria. In the future bicycle facility data
may be derived from open sources (e.g., Open Street Maps)
although this brings concern around consistency across
cities. The Destination and Connectivity Score is the Street
Smart Walk Score, for which destinations are identified
using a proprietary search strategy across diverse databases.
We cannot know if there is spatial bias in the completeness
of the amenity data. The metrics are constantly updated, a
strength for current research but a challenge for longitu-
dinal studies. Researchers should ensure they report the
calculation date for the data used, and in the long term,
data archiving may be needed. We observed that Bike
Score also has a ceiling effect (many census tracts
scoring high), so that Bike Score may have limited
sensitivity for tracking change in already bikeable
areas. Similarly, as Bike Score was created based on
North American cities. Given the relatively low prevalence
of cycling infrastructure in many North American
cities, the score may not be calibrated for other loca-
tions, especially those with extensive infrastructure.
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Finally to note that we used a Bike Score including
the three environmental components, to analyse how
this predicts mode share; data for all components are
available from the company, but the version of Bike
Score visible on the website for US cities includes the
mode share component.
This is the first study to use Bike Score, and covers 24

cities across two countries. Several limitations of the
current work should be acknowledged. We used journey
to work mode share data from national surveys, the only
comparable data across study cities. For the American
Community Survey, we used 2012 5-year averages to in-
crease the stability of the estimates for census tracts. We
used the 2011 Canadian National Household Survey for
temporal alignment, but 5-year means do not exist. In
addition, this is a voluntary survey and may carry higher
non-response error than the Census data that was
formerly available. Journey to work mode share data is
spatially located to work trip origins (home locations),
and is not necessarily an indicator of the areas with the
highest cycling volumes or destinations. Of note, the 24
study cities included here are those in the initial Bike
Score launch; while the Canadian cities are diverse, many
of the US cities were selected because they had high
cycling rates. The 9 Canadian cities included comprise
6.7 million people, or 20.1 % of the Canadian popula-
tion, whilst the 15 US cities comprise 16.6 million
people, or 2.1 % of the US population. The included
cities have great variety in terms of size and climate
(Additional file 2: Table S1). Subsequent research may
investigate how neighbourhood composition impacts
associations between Bike Score and cycling mode
share. The city-wide Bike Score used in this analysis
also includes some proprietary population weighting,
which explains why the city-wide mean Bike Scores do
not match with the mean of the census tracts for that
city. City-wide averages are also sensitive to adminis-
trative city boundaries, which include surrounding
suburbs in some cases but not others, and it is
possible that these may differ between Canadian and US
cities. Finally, this is a cross-sectional analysis of a new
metric. Planners can use Bike Score to prioritize where
to locate new infrastructure, and subsequent research
may assess if changes in Bike Score are associated
with changes in mode share.

Conclusions
The new Bike Score index predicts some of the variability
in cycling to work mode share, and can be used for re-
search with similar utility to the popular Walk Score
metric [15, 16, 11]. Given the demonstrated significant
and meaningful association across neighborhoods in
diverse US and Canadian cities, Bike Score may be a
valuable tool to aid with research and with planning

for bicycle infrastructure and increasing bicycle mode
in large studies. Further, our city-specific analyses
showed some city level variation, suggesting that
studies within a city should further investigate the
suitability of this score and its component scores for
their setting.
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